Discrete coagulation-fragmentation system with transport and diffusion
نویسنده
چکیده
— We prove the existence of solutions to two infinite systems of equations obtained by adding a transport term to the classical discrete coagulation-fragmentation system and in a second case by adding transport and spacial diffusion. In both case, the particles have the same velocity as the fluid and in the second case the diffusion coefficients are equal. First a truncated system in size is solved and after we pass to the limit by using compactness properties. RÉSUMÉ. — On démontre l’existence de solutions pour deux systèmes infinis d’équations de coagulation-fragmentation. Dans un premier cas, on rajoute un terme de transport au système classique de coagulationfragmentation et dans un second cas on rajoute un terme de transport et un terme de diffusion. Dans les deux cas les particules possèdent la même vitesse que le fluide et dans le second cas les coefficients de diffusion sont égaux. On résout dans un premier temps un problème tronqué en taille puis on passe à la limite en utilisant des lemmes de compacité.
منابع مشابه
Fast Reaction Limit of the Discrete Diffusive Coagulation-fragmentation Equation
The local mass of weak solutions to the discrete diffusive coagulation-fragmentation equation is proved to converge, in the fast reaction limit, to the solution of a nonlinear diffusion equation, the coagulation and fragmentation rates enjoying a detailed balance condition.
متن کاملRegularity and mass conservation for discrete coagulation-fragmentation equations with diffusion
We present a new a-priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this...
متن کاملAn introduction to mathematical models of coagulation–fragmentation processes: A discrete deterministic mean-field approach
We summarise the properties and the fundamental mathematical results associated with basic models which describe coagulation and fragmentation processes in a deterministic manner and in which cluster size is a discrete quantity (an integer multiple of some basic unit size). In particular, we discuss Smoluchowski’s equation for aggregation, the Becker–Döring model of simultaneous aggregation and...
متن کاملStrongly Differentiable Solutions of the Discrete Coagulation-Fragmentation Equation
We examine an infinite system of ordinary differential equations that models the coagulation and fragmentation of clusters. In contrast to previous investigations, we allow multiple fragmentation to occur and our analysis does not involve finite-dimensional truncations of the system. Instead, we treat the problem as an infinite-dimensional differential equation, posed in an appropriate Banach s...
متن کاملCoagulation-fragmentation Processes
We study the well-posedness of coagulation-fragmentation models with diiusion for large systems of particles. The continuous and the discrete case are considered simultaneously. In the discrete situation we are concerned with a countable system of coupled reaction-diiusion equations, whereas the continuous case amounts to an uncountable system of such equations. These problems can be handled by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009